On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models

نویسنده

  • S. Bardenhagen
چکیده

Higher order gradient continuum theories have often been proposed as models for solids that exhibit localization of deformation (in the form of shear bands) at sufficiently high levels of strain. These models incorporate a length scale for the localized deformation zone and are either postulated or justified from micromechanical considerations. Of interest here is the consistent derivation of such models from a given microstructure and the subsequent comparison of the solution to a boundary value problem using both the exact microscopic model and the corresponding approximate higher order gradient macroscopic model. In the interest of simplicity the microscopic model is a discrete periodic nonlinear elastic structure. The corresponding macroscopic model derived from it is a continuum model involving higher order gradients in the displacements. Attention is focused on the simplest such model, namely the one whose energy density involves only the second order gradient of the displacement. The discrete to continuum comparisons are done for a boundary value problem involving two different types of macroscopic material behavior. In addition the issues of stability and imperfection sensitivity of the solutions are also investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivation of Higher Order Gradient Continuum Theories in 2,3-d Non-linear Elasticity from Periodic Lattice Models

SOLIDS THAT I:XHIUIT localization of deformation (in the form of shear bands) at sufficiently high levels of strain, are ftrcquently modeled by gradient type non-local constitutive laws. i.e. continuum theories that include higher order deformation gradients. These models incorporate a length scale for the localized deformation zone and are either postulated or justified from micromechanical co...

متن کامل

Higher-order Gradient Elasticity Models Applied to Geometrically Nonlinear Discrete Systems

The buckling and post-buckling behavior of a nonlinear discrete repetitive system, the discrete elastica, is studied herein. The nonlinearity essentially comes from the geometrical effect, whereas the constitutive law of each component is reduced to linear elasticity. The paper primarily focuses on the relevancy of higher-order continuum approximations of the difference equations, also called c...

متن کامل

Primary resonance of an Euler-Bernoulli nano-beam modelled with second strain gradient

In the present manuscript, the second strain gradient (SSG) is utilized to investigate the primary resonance of a nonlinear Euler-Bernoulli nanobeam is analyzed in this paper...

متن کامل

Nonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics

The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...

متن کامل

Continuum Limit of a Mesoscopic Model with Elasticity of Step Motion on Vicinal Surfaces

This work considers the rigorous derivation of continuum models of step motion starting from a mesoscopic Burton–Cabrera–Frank-type model following the Xiang’s work (Xiang in SIAM J Appl Math 63(1):241–258, 2002). We prove that as the lattice parameter goes to zero, for a finite time interval, a modified discrete model converges to the strong solution of the limiting PDE with first-order conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004